如何解決Keras載入mnist數(shù)據(jù)集出錯(cuò)的問(wèn)題
1.找到本地keras目錄下的mnist.py文件,目錄:
F:\python_enter_anaconda510\Lib\site-packages\tensorflow\python\keras\datasets
2.下載mnist.npz文件到本地,下載地址:
https://s3.amazonaws.com/img-datasets/mnist.npz
3.修改mnist.py文件為以下內(nèi)容,并保存
from __future__ import absolute_import from __future__ import division from __future__ import print_function from ..utils.data_utils import get_file import numpy as np def load_data(path='mnist.npz'): """Loads the MNIST dataset. # Arguments path: path where to cache the dataset locally (relative to ~/.keras/datasets). # Returns Tuple of Numpy arrays: `(x_train, y_train), (x_test, y_test)`. """ path = 'E:/Data/Mnist/mnist.npz' #此處的path為你剛剛防止mnist.py的目錄。注意斜杠 f = np.load(path) x_train, y_train = f['x_train'], f['y_train'] x_test, y_test = f['x_test'], f['y_test'] f.close() return (x_train, y_train), (x_test, y_test)
補(bǔ)充:Keras MNIST 手寫數(shù)字識(shí)別數(shù)據(jù)集
下載 MNIST 數(shù)據(jù)
1 導(dǎo)入相關(guān)的模塊
import keras import numpy as np from keras.utils import np_utils import os from keras.datasets import mnist
2 第一次進(jìn)行Mnist 數(shù)據(jù)的下載
(X_train_image ,y_train_image),(X_test_image,y_test_image) = mnist.load_data()
第一次執(zhí)行 mnist.load_data() 方法 ,程序會(huì)檢查用戶目錄下是否已經(jīng)存在 MNIST 數(shù)據(jù)集文件 ,如果沒(méi)有,就會(huì)自動(dòng)下載 . (所以第一次運(yùn)行比較慢) .
3 查看已經(jīng)下載的MNIST 數(shù)據(jù)文件

4 查看MNIST數(shù)據(jù)
print('train data = ' ,len(X_train_image)) #
print('test data = ',len(X_test_image))
查看訓(xùn)練數(shù)據(jù)
1 訓(xùn)練集是由 images 和 label 組成的 , images 是數(shù)字的單色數(shù)字圖像 28 x 28 的 , label 是images 對(duì)應(yīng)的數(shù)字的十進(jìn)制表示 .
2 顯示數(shù)字的圖像
import matplotlib.pyplot as plt def plot_image(image): fig = plt.gcf() fig.set_size_inches(2,2) # 設(shè)置圖形的大小 plt.imshow(image,cmap='binary') # 傳入圖像image ,cmap 參數(shù)設(shè)置為 binary ,以黑白灰度顯示 plt.show()
3 查看訓(xùn)練數(shù)據(jù)中的第一個(gè)數(shù)據(jù)
plot_image(x_train_image[0])

查看對(duì)應(yīng)的標(biāo)記(真實(shí)值)
print(y_train_image[0])
運(yùn)行結(jié)果 : 5
查看多項(xiàng)訓(xùn)練數(shù)據(jù) images 與 label
上面我們只顯示了一組數(shù)據(jù)的圖像 , 下面將顯示多組手寫數(shù)字的圖像展示 ,以便我們查看數(shù)據(jù) .
def plot_images_labels_prediction(images, labels, prediction, idx, num=10): fig = plt.gcf() fig.set_size_inches(12, 14) # 設(shè)置大小 if num > 25: num = 25 for i in range(0, num): ax = plt.subplot(5, 5, 1 + i)# 分成 5 X 5 個(gè)子圖顯示, 第三個(gè)參數(shù)表示第幾個(gè)子圖 ax.imshow(images[idx], cmap='binary') title = "label=" + str(labels[idx]) if len(prediction) > 0: # 如果有預(yù)測(cè)值 title += ",predict=" + str(prediction[idx]) ax.set_title(title, fontsize=10) ax.set_xticks([]) ax.set_yticks([]) idx += 1 plt.show() plot_images_labels_prediction(x_train_image,y_train_image,[],0,10)

查看測(cè)試集 的手寫數(shù)字前十個(gè)
plot_images_labels_prediction(x_test_image,y_test_image,[],0,10)

多層感知器模型數(shù)據(jù)預(yù)處理
feature (數(shù)字圖像的特征值) 數(shù)據(jù)預(yù)處理可分為兩個(gè)步驟:
(1) 將原本的 288 X28 的數(shù)字圖像以 reshape 轉(zhuǎn)換為 一維的向量 ,其長(zhǎng)度為 784 ,并且轉(zhuǎn)換為 float
(2) 數(shù)字圖像 image 的數(shù)字標(biāo)準(zhǔn)化
1 查看image 的shape
print("x_train_image : " ,len(x_train_image) , x_train_image.shape )
print("y_train_label : ", len(y_train_label) , y_train_label.shape)
#output :
x_train_image : 60000 (60000, 28, 28)
y_train_label : 60000 (60000,)
2 將 lmage 以 reshape 轉(zhuǎn)換
# 將 image 以 reshape 轉(zhuǎn)化
x_Train = x_train_image.reshape(60000,784).astype('float32')
x_Test = x_test_image.reshape(10000,784).astype('float32')
print('x_Train : ' ,x_Train.shape)
print('x_Test' ,x_Test.shape)
3 標(biāo)準(zhǔn)化
images 的數(shù)字標(biāo)準(zhǔn)化可以提高后續(xù)訓(xùn)練模型的準(zhǔn)確率 ,因?yàn)?images 的數(shù)字 是從 0 到255 的值 ,代表圖形每一個(gè)點(diǎn)灰度的深淺 .
# 標(biāo)準(zhǔn)化 x_Test_normalize = x_Test/255 x_Train_normalize = x_Train/255
4 查看標(biāo)準(zhǔn)化后的測(cè)試集和訓(xùn)練集 image
print(x_Train_normalize[0]) # 訓(xùn)練集中的第一個(gè)數(shù)字的標(biāo)準(zhǔn)化
x_train_image : 60000 (60000, 28, 28) y_train_label : 60000 (60000,) [0.0.0.0.0.0. ........................................................ 0.0.0.0.0.0. 0. 0.21568628 0.6745098 0.8862745 0.99215686 0.99215686 0.99215686 0.99215686 0.95686275 0.52156866 0.04313726 0.0. 0.0.0.0.0.0. 0.0.0.0.0.0. 0.0.0.0.0.53333336 0.99215686 0.99215686 0.99215686 0.83137256 0.5294118 0.5176471 0.0627451 0.0.0.0. ]
Label 數(shù)據(jù)的預(yù)處理
label 標(biāo)簽字段原本是 0 ~ 9 的數(shù)字 ,必須以 One -hot Encoding 獨(dú)熱編碼 轉(zhuǎn)換為 10個(gè) 0,1 組合 ,比如 7 經(jīng)過(guò) One -hot encoding
轉(zhuǎn)換為 0000000100 ,正好就對(duì)應(yīng)了輸出層的 10 個(gè) 神經(jīng)元 .
# 將訓(xùn)練集和測(cè)試集標(biāo)簽都進(jìn)行獨(dú)熱碼轉(zhuǎn)化 y_TrainOneHot = np_utils.to_categorical(y_train_label) y_TestOneHot = np_utils.to_categorical(y_test_label)
print(y_TrainOneHot[:5]) # 查看前5項(xiàng)的標(biāo)簽
[[0. 0. 0. 0. 0. 1. 0. 0. 0. 0.] 5 [1. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 0 [0. 0. 0. 0. 1. 0. 0. 0. 0. 0.] 4 [0. 1. 0. 0. 0. 0. 0. 0. 0. 0.] 1 [0. 0. 0. 0. 0. 0. 0. 0. 0. 1.]] 9
Keras 多元感知器識(shí)別 MNIST 手寫數(shù)字圖像的介紹
1 我們將將建立如圖所示的多層感知器模型

2 建立model 后 ,必須先訓(xùn)練model 才能進(jìn)行預(yù)測(cè)(識(shí)別)這些手寫數(shù)字 .

數(shù)據(jù)的預(yù)處理我們已經(jīng)處理完了. 包含 數(shù)據(jù)集 輸入(數(shù)字圖像)的標(biāo)準(zhǔn)化 , label的one-hot encoding
下面我們將建立模型
我們將建立多層感知器模型 ,輸入層 共有784 個(gè)神經(jīng)元 ,hodden layer 有 256 個(gè)neure ,輸出層用 10 個(gè)神經(jīng)元 .
1 導(dǎo)入相關(guān)模塊
from keras.models import Sequential from keras.layers import Dense
2 建立 Sequence 模型
# 建立Sequential 模型 model = Sequential()
3 建立 "輸入層" 和 "隱藏層"
使用 model,add() 方法加入 Dense 神經(jīng)網(wǎng)絡(luò)層 .
model.add(Dense(units=256, input_dim =784, keras_initializer='normal', activation='relu') )
| 參數(shù) | 說(shuō)明 |
| units =256 | 定義"隱藏層"神經(jīng)元的個(gè)數(shù)為256 |
| input_dim | 設(shè)置輸入層神經(jīng)元個(gè)數(shù)為 784 |
| kernel_initialize='normal' | 使用正態(tài)分布的隨機(jī)數(shù)初始化weight和bias |
| activation | 激勵(lì)函數(shù)為 relu |
4 建立輸出層
model.add(Dense( units=10, kernel_initializer='normal', activation='softmax' ))
| 參數(shù) | 說(shuō)明 |
| units | 定義"輸出層"神經(jīng)元個(gè)數(shù)為10 |
| kernel_initializer='normal' | 同上 |
| activation='softmax | 激活函數(shù) softmax |
5 查看模型的摘要
print(model.summary())

param 的計(jì)算是 上一次的神經(jīng)元個(gè)數(shù) * 本層神經(jīng)元個(gè)數(shù) + 本層神經(jīng)元個(gè)數(shù) .
進(jìn)行訓(xùn)練
1 定義訓(xùn)練方式
model.compile(loss='categorical_crossentropy' ,optimizer='adam',metrics=['accuracy'])
loss (損失函數(shù)) : 設(shè)置損失函數(shù), 這里使用的是交叉熵 .
optimizer : 優(yōu)化器的選擇,可以讓訓(xùn)練更快的收斂
metrics : 設(shè)置評(píng)估模型的方式是準(zhǔn)確率
開始訓(xùn)練 2
train_history = model.fit(x=x_Train_normalize,y=y_TrainOneHot,validation_split=0.2 , epoch=10,batch_size=200,verbose=2)
使用 model.fit() 進(jìn)行訓(xùn)練 , 訓(xùn)練過(guò)程會(huì)存儲(chǔ)在 train_history 變量中 .
(1)輸入訓(xùn)練數(shù)據(jù)參數(shù)
x = x_Train_normalize
y = y_TrainOneHot
(2)設(shè)置訓(xùn)練集和驗(yàn)證集的數(shù)據(jù)比例
validation_split=0.2 8 :2 = 訓(xùn)練集 : 驗(yàn)證集
(3) 設(shè)置訓(xùn)練周期 和 每一批次項(xiàng)數(shù)
epoch=10,batch_size=200
(4) 顯示訓(xùn)練過(guò)程
verbose = 2
3 建立show_train_history 顯示訓(xùn)練過(guò)程
def show_train_history(train_history,train,validation) :
plt.plot(train_history.history[train])
plt.plot(train_history.history[validation])
plt.title("Train_history")
plt.ylabel(train)
plt.xlabel('Epoch')
plt.legend(['train','validation'],loc='upper left')
plt.show()

測(cè)試數(shù)據(jù)評(píng)估模型準(zhǔn)確率
scores = model.evaluate(x_Test_normalize,y_TestOneHot)
print()
print('accuracy=',scores[1] )
accuracy= 0.9769
進(jìn)行預(yù)測(cè)
通過(guò)之前的步驟, 我們建立了模型, 并且完成了模型訓(xùn)練 ,準(zhǔn)確率達(dá)到可以接受的 0.97 . 接下來(lái)我們將使用此模型進(jìn)行預(yù)測(cè).
1 執(zhí)行預(yù)測(cè)
prediction = model.predict_classes(x_Test) print(prediction)
result : [7 2 1 ... 4 5 6]
2 顯示 10 項(xiàng)預(yù)測(cè)結(jié)果
plot_images_labels_prediction(x_test_image,y_test_label,prediction,idx=340)

我們可以看到 第一個(gè)數(shù)字 label 是 5 結(jié)果預(yù)測(cè)成 3 了.
顯示混淆矩陣
上面我們?cè)陬A(yù)測(cè)到第340 個(gè)測(cè)試集中的數(shù)字5 時(shí) ,卻被錯(cuò)誤的預(yù)測(cè)成了 3 .如果想要更進(jìn)一步的知道我們所建立的模型中哪些 數(shù)字的預(yù)測(cè)準(zhǔn)確率更高 , 哪些數(shù)字會(huì)容忍混淆 .
混淆矩陣 也稱為 誤差矩陣.
1 使用Pandas 建立混淆矩陣 .
showMetrix = pd.crosstab(y_test_label,prediction,colnames=['label',],rownames=['predict']) print(showMetrix)
label0 1 2 3 4 5 6 7 8 9 predict 0 971 0 1 1 1 0 2 1 3 0 1 0 1124 4 0 0 1 2 0 4 0 2 5 0 1009 2 1 0 3 4 8 0 3 0 0 5 993 0 1 0 3 4 4 4 1 0 5 1 961 0 3 0 3 8 5 3 0 016 1 852 7 2 8 3 6 5 3 3 1 3 3 939 0 1 0 7 0 5 13 7 1 0 0 988 5 9 8 4 0 3 7 1 1 1 2 954 1 9 3 6 011 7 2 1 4 4 971
2 使用DataFrame
df = pd.DataFrame({'label ':y_test_label, 'predict':prediction})
print(df)
labelpredict 0 7 7 1 2 2 2 1 1 3 0 0 4 4 4 5 1 1 6 4 4 7 9 9 8 5 5 9 9 9 100 0 116 6 129 9 130 0 141 1 155 5 169 9 177 7 183 3 194 4 209 9 216 6 226 6 235 5 244 4 250 0 267 7 274 4 280 0 291 1 ......... 9970 5 5 9971 2 2 9972 4 4 9973 9 9 9974 4 4 9975 3 3 9976 6 6 9977 4 4 9978 1 1 9979 7 7 9980 2 2 9981 6 6 9982 5 6 9983 0 0 9984 1 1 9985 2 2 9986 3 3 9987 4 4 9988 5 5 9989 6 6 9990 7 7 9991 8 8 9992 9 9 9993 0 0 9994 1 1 9995 2 2 9996 3 3 9997 4 4 9998 5 5 9999 6 6
隱藏層增加為 1000個(gè)神經(jīng)元
model.add(Dense(units=1000, input_dim=784, kernel_initializer='normal', activation='relu'))
hidden layer 神經(jīng)元的增大,參數(shù)也增多了, 所以訓(xùn)練model的時(shí)間也變慢了.
加入 Dropout 功能避免過(guò)度擬合
# 建立Sequential 模型 model = Sequential() model.add(Dense(units=1000, input_dim=784, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) # 加入Dropout model.add(Dense(units=10, kernel_initializer='normal', activation='softmax'))

訓(xùn)練的準(zhǔn)確率 和 驗(yàn)證的準(zhǔn)確率 差距變小了 .
建立多層感知器模型包含兩層隱藏層
# 建立Sequential 模型 model = Sequential() # 輸入層 +" 隱藏層"1 model.add(Dense(units=1000, input_dim=784, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) # 加入Dropout # " 隱藏層"2 model.add(Dense(units=1000, kernel_initializer='normal', activation='relu')) model.add(Dropout(0.5)) # 加入Dropout # " 輸出層" model.add(Dense(units=10, kernel_initializer='normal', activation='softmax')) print(model.summary())

代碼:
import tensorflow as tf
import keras
import matplotlib.pyplot as plt
import numpy as np
from keras.utils import np_utils
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
import pandas as pd
import os
np.random.seed(10)
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
(x_train_image ,y_train_label),(x_test_image,y_test_label) = mnist.load_data()
#
# print('train data = ' ,len(X_train_image)) #
# print('test data = ',len(X_test_image))
def plot_image(image):
fig = plt.gcf()
fig.set_size_inches(2,2) # 設(shè)置圖形的大小
plt.imshow(image,cmap='binary') # 傳入圖像image ,cmap 參數(shù)設(shè)置為 binary ,以黑白灰度顯示
plt.show()
def plot_images_labels_prediction(images, labels,
prediction, idx, num=10):
fig = plt.gcf()
fig.set_size_inches(12, 14)
if num > 25: num = 25
for i in range(0, num):
ax = plt.subplot(5, 5, 1 + i)# 分成 5 X 5 個(gè)子圖顯示, 第三個(gè)參數(shù)表示第幾個(gè)子圖
ax.imshow(images[idx], cmap='binary')
title = "label=" + str(labels[idx])
if len(prediction) > 0:
title += ",predict=" + str(prediction[idx])
ax.set_title(title, fontsize=10)
ax.set_xticks([])
ax.set_yticks([])
idx += 1
plt.show()
def show_train_history(train_history,train,validation) :
plt.plot(train_history.history[train])
plt.plot(train_history.history[validation])
plt.title("Train_history")
plt.ylabel(train)
plt.xlabel('Epoch')
plt.legend(['train','validation'],loc='upper left')
plt.show()
# plot_images_labels_prediction(x_train_image,y_train_image,[],0,10)
#
# plot_images_labels_prediction(x_test_image,y_test_image,[],0,10)
print("x_train_image : " ,len(x_train_image) , x_train_image.shape )
print("y_train_label : ", len(y_train_label) , y_train_label.shape)
# 將 image 以 reshape 轉(zhuǎn)化
x_Train = x_train_image.reshape(60000,784).astype('float32')
x_Test = x_test_image.reshape(10000,784).astype('float32')
# print('x_Train : ' ,x_Train.shape)
# print('x_Test' ,x_Test.shape)
# 標(biāo)準(zhǔn)化
x_Test_normalize = x_Test/255
x_Train_normalize = x_Train/255
# print(x_Train_normalize[0]) # 訓(xùn)練集中的第一個(gè)數(shù)字的標(biāo)準(zhǔn)化
# 將訓(xùn)練集和測(cè)試集標(biāo)簽都進(jìn)行獨(dú)熱碼轉(zhuǎn)化
y_TrainOneHot = np_utils.to_categorical(y_train_label)
y_TestOneHot = np_utils.to_categorical(y_test_label)
print(y_TrainOneHot[:5]) # 查看前5項(xiàng)的標(biāo)簽
# 建立Sequential 模型
model = Sequential()
model.add(Dense(units=1000,
input_dim=784,
kernel_initializer='normal',
activation='relu'))
model.add(Dropout(0.5)) # 加入Dropout
# " 隱藏層"2
model.add(Dense(units=1000,
kernel_initializer='normal',
activation='relu'))
model.add(Dropout(0.5)) # 加入Dropout
model.add(Dense(units=10,
kernel_initializer='normal',
activation='softmax'))
print(model.summary())
# 訓(xùn)練方式
model.compile(loss='categorical_crossentropy' ,optimizer='adam',metrics=['accuracy'])
# 開始訓(xùn)練
train_history =model.fit(x=x_Train_normalize, y=y_TrainOneHot,validation_split=0.2, epochs=10, batch_size=200,verbose=2)
show_train_history(train_history,'acc','val_acc')
scores = model.evaluate(x_Test_normalize,y_TestOneHot)
print()
print('accuracy=',scores[1] )
prediction = model.predict_classes(x_Test)
print(prediction)
plot_images_labels_prediction(x_test_image,y_test_label,prediction,idx=340)
showMetrix = pd.crosstab(y_test_label,prediction,colnames=['label',],rownames=['predict'])
print(showMetrix)
df = pd.DataFrame({'label ':y_test_label, 'predict':prediction})
print(df)
#
#
# plot_image(x_train_image[0])
#
# print(y_train_image[0])
代碼2:
import numpy as np
from keras.models import Sequential
from keras.layers import Dense , Dropout ,Deconv2D
from keras.utils import np_utils
from keras.datasets import mnist
from keras.optimizers import SGD
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
def load_data():
(x_train,y_train),(x_test,y_test) = mnist.load_data()
number = 10000
x_train = x_train[0:number]
y_train = y_train[0:number]
x_train =x_train.reshape(number,28*28)
x_test = x_test.reshape(x_test.shape[0],28*28)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
y_train = np_utils.to_categorical(y_train,10)
y_test = np_utils.to_categorical(y_test,10)
x_train = x_train/255
x_test = x_test /255
return (x_train,y_train),(x_test,y_test)
(x_train,y_train),(x_test,y_test) = load_data()
model = Sequential()
model.add(Dense(input_dim=28*28,units=689,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=689,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=689,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(output_dim=10,activation='softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['accuracy'])
model.fit(x_train,y_train,batch_size=10000,epochs=20)
res1 = model.evaluate(x_train,y_train,batch_size=10000)
print("\n Train Acc :",res1[1])
res2 = model.evaluate(x_test,y_test,batch_size=10000)
print("\n Test Acc :",res2[1])
以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持本站。
版權(quán)聲明:本站文章來(lái)源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請(qǐng)保持原文完整并注明來(lái)源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非maisonbaluchon.cn所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來(lái)源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來(lái),僅供學(xué)習(xí)參考,不代表本站立場(chǎng),如有內(nèi)容涉嫌侵權(quán),請(qǐng)聯(lián)系alex-e#qq.com處理。
關(guān)注官方微信