pytorch 中nn.Dropout的使用說明
看代碼吧~
Class USeDropout(nn.Module): def __init__(self): super(DropoutFC, self).__init__() self.fc = nn.Linear(100,20) self.dropout = nn.Dropout(p=0.5) def forward(self, input): out = self.fc(input) out = self.dropout(out) return out Net = USeDropout() Net.train()
示例代碼如上,直接調(diào)用nn.Dropout即可,但是注意在調(diào)用時要將模型參數(shù)傳入。
補(bǔ)充:Pytorch的nn.Dropout運行穩(wěn)定性測試
結(jié)論:
Pytorch的nn.Dropout在每次被調(diào)用時dropout掉的參數(shù)都不一樣,即使是同一次forward也不同。
如果模型里多次使用的dropout的dropout rate大小相同,用同一個dropout層即可。
如代碼所示:
import torch import torch.nn as nn class MyModel(nn.Module): def __init__(self): super(MyModel, self).__init__() self.dropout_1 = nn.Dropout(0.5) self.dropout_2 = nn.Dropout(0.5) def forward(self, input): # print(input) drop_1 = self.dropout_1(input) print(drop_1) drop_1 = self.dropout_1(input) print(drop_1) drop_2 = self.dropout_2(input) print(drop_2) if __name__ == '__main__': i = torch.rand((5, 5)) m = MyModel() m.forward(i)
結(jié)果如下:
*\python.exe */model.py
tensor([[0.0000, 0.0914, 0.0000, 1.4095, 0.0000],
[0.0000, 0.0000, 0.1726, 1.3800, 0.0000],
[1.7651, 0.0000, 0.0000, 0.9421, 1.5603],
[1.0510, 1.7290, 0.0000, 0.0000, 0.8565],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])
tensor([[0.0000, 0.0000, 0.4722, 1.4095, 0.0000],
[0.0416, 0.0000, 0.1726, 1.3800, 1.3193],
[0.0000, 0.3401, 0.6550, 0.0000, 0.0000],
[1.0510, 1.7290, 1.5515, 0.0000, 0.0000],
[0.6388, 0.0000, 0.0000, 1.0122, 0.0000]])
tensor([[0.0000, 0.0000, 0.4722, 0.0000, 1.2689],
[0.0416, 0.0000, 0.0000, 1.3800, 0.0000],
[0.0000, 0.0000, 0.6550, 0.0000, 1.5603],
[0.0000, 0.0000, 1.5515, 1.4596, 0.0000],
[0.0000, 0.0000, 0.0000, 0.0000, 0.0000]])Process finished with exit code 0
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持本站。
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非maisonbaluchon.cn所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。
關(guān)注官方微信