五月综合激情婷婷六月,日韩欧美国产一区不卡,他扒开我内裤强吻我下面视频 ,无套内射无矿码免费看黄,天天躁,日日躁,狠狠躁

新聞動(dòng)態(tài)

零基礎(chǔ)學(xué)習(xí)Python爬蟲(chóng)

發(fā)布日期:2022-02-05 08:29 | 文章來(lái)源:CSDN

講解我們的爬蟲(chóng)之前,先概述關(guān)于爬蟲(chóng)的簡(jiǎn)單概念(畢竟是零基礎(chǔ)教程)

爬蟲(chóng)

網(wǎng)絡(luò)爬蟲(chóng)(又被稱為網(wǎng)頁(yè)蜘蛛,網(wǎng)絡(luò)機(jī)器人)就是模擬瀏覽器發(fā)送網(wǎng)絡(luò)請(qǐng)求,接收請(qǐng)求響應(yīng),一種按照一定的規(guī)則,自動(dòng)地抓取互聯(lián)網(wǎng)信息的程序。
原則上,只要是瀏覽器(客戶端)能做的事情,爬蟲(chóng)都能夠做。

為什么我們要使用爬蟲(chóng)

互聯(lián)網(wǎng)大數(shù)據(jù)時(shí)代,給予我們的是生活的便利以及海量數(shù)據(jù)爆炸式的出現(xiàn)在網(wǎng)絡(luò)中。
過(guò)去,我們通過(guò)書(shū)籍、報(bào)紙、電視、廣播或許信息,這些信息數(shù)量有限,且是經(jīng)過(guò)一定的篩選,信息相對(duì)而言比較有效,但是缺點(diǎn)則是信息面太過(guò)于狹窄了。不對(duì)稱的信息傳導(dǎo),以致于我們視野受限,無(wú)法了解到更多的信息和知識(shí)。
互聯(lián)網(wǎng)大數(shù)據(jù)時(shí)代,我們突然間,信息獲取自由了,我們得到了海量的信息,但是大多數(shù)都是無(wú)效的垃圾信息。
例如新浪微博,一天產(chǎn)生數(shù)億條的狀態(tài)更新,而在百度搜索引擎中,隨意搜一條——減肥100,000,000條信息。
在如此海量的信息碎片中,我們?nèi)绾潍@取對(duì)自己有用的信息呢?
答案是篩選!
通過(guò)某項(xiàng)技術(shù)將相關(guān)的內(nèi)容收集起來(lái),在分析刪選才能得到我們真正需要的信息。
這個(gè)信息收集分析整合的工作,可應(yīng)用的范疇非常的廣泛,無(wú)論是生活服務(wù)、出行旅行、金融投資、各類制造業(yè)的產(chǎn)品市場(chǎng)需求等等……都能夠借助這個(gè)技術(shù)獲取更精準(zhǔn)有效的信息加以利用。
網(wǎng)絡(luò)爬蟲(chóng)技術(shù),雖說(shuō)有個(gè)詭異的名字,讓能第一反應(yīng)是那種軟軟的蠕動(dòng)的生物,但它卻是一個(gè)可以在虛擬世界里,無(wú)往不前的利器。

爬蟲(chóng)準(zhǔn)備工作

我們平時(shí)都說(shuō)Python爬蟲(chóng),其實(shí)這里可能有個(gè)誤解,爬蟲(chóng)并不是Python獨(dú)有的,可以做爬蟲(chóng)的語(yǔ)言有很多例如:PHP,JAVA,C#,C++,Python,選擇Python做爬蟲(chóng)是因?yàn)镻ython相對(duì)來(lái)說(shuō)比較簡(jiǎn)單,而且功能比較齊全。
首先我們需要下載python,我下載的是官方最新的版本 3.8.3
其次我們需要一個(gè)運(yùn)行Python的環(huán)境,我用的是pychram


也可以從官方下載,
我們還需要一些庫(kù)來(lái)支持爬蟲(chóng)的運(yùn)行(有些庫(kù)Python可能自帶了)


差不多就是這幾個(gè)庫(kù)了,良心的我已經(jīng)在后面寫(xiě)好注釋了


(爬蟲(chóng)運(yùn)行過(guò)程中,不一定就只需要上面幾個(gè)庫(kù),看你爬蟲(chóng)的一個(gè)具體寫(xiě)法了,反正需要庫(kù)的話我們可以直接在setting里面安裝)

爬蟲(chóng)項(xiàng)目講解

我做的是爬取豆瓣評(píng)分電影Top250的爬蟲(chóng)代碼
我們要爬取的就是這個(gè)網(wǎng)站:https://movie.douban.com/top250

這邊我已經(jīng)爬取完畢,給大家看下效果圖,我是將爬取到的內(nèi)容存到xls中

我們的爬取的內(nèi)容是:電影詳情鏈接,圖片鏈接,影片中文名,影片外國(guó)名,評(píng)分,評(píng)價(jià)數(shù),概況,相關(guān)信息。

代碼分析

先把代碼發(fā)放上來(lái),然后我根據(jù)代碼逐步解析

# -*- codeing = utf-8 -*-
from bs4 import BeautifulSoup  # 網(wǎng)頁(yè)解析,獲取數(shù)據(jù)
import re  # 正則表達(dá)式,進(jìn)行文字匹配`
import urllib.request, urllib.error  # 制定URL,獲取網(wǎng)頁(yè)數(shù)據(jù)
import xlwt  # 進(jìn)行excel操作
#import sqlite3  # 進(jìn)行SQLite數(shù)據(jù)庫(kù)操作
findLink = re.compile(r'<a href="(.*?)" rel="external nofollow"  rel="external nofollow" >')  # 創(chuàng)建正則表達(dá)式對(duì)象,標(biāo)售規(guī)則影片詳情鏈接的規(guī)則
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人評(píng)價(jià)</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)def main():
 baseurl = "https://movie.douban.com/top250?start="  #要爬取的網(wǎng)頁(yè)鏈接
 # 1.爬取網(wǎng)頁(yè)
 datalist = getData(baseurl)
 savepath = "豆瓣電影Top250.xls" #當(dāng)前目錄新建XLS,存儲(chǔ)進(jìn)去
 # dbpath = "movie.db"  #當(dāng)前目錄新建數(shù)據(jù)庫(kù),存儲(chǔ)進(jìn)去
 # 3.保存數(shù)據(jù)
 saveData(datalist,savepath)#2種存儲(chǔ)方式可以只選擇一種
 # saveData2DB(datalist,dbpath)

# 爬取網(wǎng)頁(yè)
def getData(baseurl):
 datalist = []  #用來(lái)存儲(chǔ)爬取的網(wǎng)頁(yè)信息
 for i in range(0, 10):  # 調(diào)用獲取頁(yè)面信息的函數(shù),10次
  url = baseurl + str(i * 25)
  html = askURL(url)  # 保存獲取到的網(wǎng)頁(yè)源碼
  # 2.逐一解析數(shù)據(jù)
  soup = BeautifulSoup(html, "html.parser")
  for item in soup.find_all('div', class_="item"):  # 查找符合要求的字符串
data = []  # 保存一部電影所有信息
item = str(item)
link = re.findall(findLink, item)[0]  # 通過(guò)正則表達(dá)式查找
data.append(link)
imgSrc = re.findall(findImgSrc, item)[0]
data.append(imgSrc)
titles = re.findall(findTitle, item)
if (len(titles) == 2):
 ctitle = titles[0]
 data.append(ctitle)
 otitle = titles[1].replace("/", "")  #消除轉(zhuǎn)義字符
 data.append(otitle)
else:
 data.append(titles[0])
 data.append(' ')
rating = re.findall(findRating, item)[0]
data.append(rating)
judgeNum = re.findall(findJudge, item)[0]
data.append(judgeNum)
inq = re.findall(findInq, item)
if len(inq) != 0:
 inq = inq[0].replace("。", "")
 data.append(inq)
else:
 data.append(" ")
bd = re.findall(findBd, item)[0]
bd = re.sub('<br(\s+)?/>(\s+)?', "", bd)
bd = re.sub('/', "", bd)
data.append(bd.strip())
datalist.append(data)
 return datalist

# 得到指定一個(gè)URL的網(wǎng)頁(yè)內(nèi)容
def askURL(url):
 head = {  # 模擬瀏覽器頭部信息,向豆瓣服務(wù)器發(fā)送消息
  "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
 }
 # 用戶代理,表示告訴豆瓣服務(wù)器,我們是什么類型的機(jī)器、瀏覽器(本質(zhì)上是告訴瀏覽器,我們可以接收什么水平的文件內(nèi)容)
 request = urllib.request.Request(url, headers=head)
 html = ""
 try:
  response = urllib.request.urlopen(request)
  html = response.read().decode("utf-8")
 except urllib.error.URLError as e:
  if hasattr(e, "code"):
print(e.code)
  if hasattr(e, "reason"):
print(e.reason)
 return html

# 保存數(shù)據(jù)到表格
def saveData(datalist,savepath):
 print("save.......")
 book = xlwt.Workbook(encoding="utf-8",style_compression=0) #創(chuàng)建workbook對(duì)象
 sheet = book.add_sheet('豆瓣電影Top250', cell_overwrite_ok=True) #創(chuàng)建工作表
 col = ("電影詳情鏈接","圖片鏈接","影片中文名","影片外國(guó)名","評(píng)分","評(píng)價(jià)數(shù)","概況","相關(guān)信息")
 for i in range(0,8):
  sheet.write(0,i,col[i])  #列名
 for i in range(0,250):
  # print("第%d條" %(i+1)) #輸出語(yǔ)句,用來(lái)測(cè)試
  data = datalist[i]
  for j in range(0,8):
sheet.write(i+1,j,data[j])  #數(shù)據(jù)
 book.save(savepath) #保存
# def saveData2DB(datalist,dbpath):
#  init_db(dbpath)
#  conn = sqlite3.connect(dbpath)
#  cur = conn.cursor()
#  for data in datalist:
# for index in range(len(data)):
#  if index == 4 or index == 5:
#continue
#  data[index] = '"'+data[index]+'"'
# sql = '''
#insert into movie250(
#info_link,pic_link,cname,ename,score,rated,instroduction,info)
#values (%s)'''%",".join(data)
# # print(sql)  #輸出查詢語(yǔ)句,用來(lái)測(cè)試
# cur.execute(sql)
# conn.commit()
#  cur.close
#  conn.close()

# def init_db(dbpath):
#  sql = '''
#create table movie250(
#id integer  primary  key autoincrement,
#info_link text,
#pic_link text,
#cname varchar,
#ename varchar ,
#score numeric,
#rated numeric,
#instroduction text,
#info text
#)
#
#
#  '''  #創(chuàng)建數(shù)據(jù)表
#  conn = sqlite3.connect(dbpath)
#  cursor = conn.cursor()
#  cursor.execute(sql)
#  conn.commit()
#  conn.close()
# 保存數(shù)據(jù)到數(shù)據(jù)庫(kù)
if __name__ == "__main__":  # 當(dāng)程序執(zhí)行時(shí)
 # 調(diào)用函數(shù)
  main()
 # init_db("movietest.db")
  print("爬取完畢!")

下面我根據(jù)代碼,從下到下給大家講解分析一遍

-- codeing = utf-8 --,開(kāi)頭的這個(gè)是設(shè)置編碼為utf-8 ,寫(xiě)在開(kāi)頭,防止亂碼。
然后下面import就是導(dǎo)入一些庫(kù),做做準(zhǔn)備工作,(sqlite3這庫(kù)我并沒(méi)有用到所以我注釋起來(lái)了)。
下面一些find開(kāi)頭的是正則表達(dá)式,是用來(lái)我們篩選信息的。
(正則表達(dá)式用到 re 庫(kù),也可以不用正則表達(dá)式,不是必須的。)
大體流程分三步走:

1. 爬取網(wǎng)頁(yè)
2.逐一解析數(shù)據(jù)
3. 保存網(wǎng)頁(yè)

先分析流程

1.爬取網(wǎng)頁(yè)

baseurl 就是我們要爬蟲(chóng)的網(wǎng)頁(yè)網(wǎng)址,往下走,調(diào)用了 getData(baseurl) ,
我們來(lái)看 getData方法

  for i in range(0, 10):  # 調(diào)用獲取頁(yè)面信息的函數(shù),10次
  url = baseurl + str(i * 25)

這段大家可能看不懂,其實(shí)是這樣的:
因?yàn)殡娪霸u(píng)分Top250,每個(gè)頁(yè)面只顯示25個(gè),所以我們需要訪問(wèn)頁(yè)面10次,25*10=250。

baseurl = "https://movie.douban.com/top250?start="

我們只要在baseurl后面加上數(shù)字就會(huì)跳到相應(yīng)頁(yè)面,比如i=1時(shí)

https://movie.douban.com/top250?start=25

我放上超鏈接,大家可以點(diǎn)擊看看會(huì)跳到哪個(gè)頁(yè)面,畢竟實(shí)踐出真知。

然后又調(diào)用了askURL來(lái)請(qǐng)求網(wǎng)頁(yè),這個(gè)方法是請(qǐng)求網(wǎng)頁(yè)的主體方法,
怕大家翻頁(yè)麻煩,我再把代碼復(fù)制一遍,讓大家有個(gè)直觀感受

def askURL(url):
 head = {  # 模擬瀏覽器頭部信息,向豆瓣服務(wù)器發(fā)送消息
  "User-Agent": "Mozilla / 5.0(Windows NT 10.0; Win64; x64) AppleWebKit / 537.36(KHTML, like Gecko) Chrome / 80.0.3987.122  Safari / 537.36"
 }
 # 用戶代理,表示告訴豆瓣服務(wù)器,我們是什么類型的機(jī)器、瀏覽器(本質(zhì)上是告訴瀏覽器,我們可以接收什么水平的文件內(nèi)容)
 request = urllib.request.Request(url, headers=head)
 html = ""
 try:
  response = urllib.request.urlopen(request)
  html = response.read().decode("utf-8")
 except urllib.error.URLError as e:
  if hasattr(e, "code"):
print(e.code)
  if hasattr(e, "reason"):
print(e.reason)
 return html

這個(gè)askURL就是用來(lái)向網(wǎng)頁(yè)發(fā)送請(qǐng)求用的,那么這里就有老鐵問(wèn)了,為什么這里要寫(xiě)個(gè)head呢?

這是因?yàn)槲覀円遣粚?xiě)的話,訪問(wèn)某些網(wǎng)站的時(shí)候會(huì)被認(rèn)出來(lái)爬蟲(chóng),顯示錯(cuò)誤,錯(cuò)誤代碼

418

這是一個(gè)梗大家可以百度下,

418 I'm a teapot

The HTTP 418 I'm a teapot client error response code indicates that
the server refuses to brew coffee because it is a teapot. This error
is a reference to Hyper Text Coffee Pot Control Protocol which was an
April Fools' joke in 1998.

我是一個(gè)茶壺

所以我們需要 “裝” ,裝成我們就是一個(gè)瀏覽器,這樣就不會(huì)被認(rèn)出來(lái),
偽裝一個(gè)身份。

來(lái),我們繼續(xù)往下走,

  html = response.read().decode("utf-8")

這段就是我們讀取網(wǎng)頁(yè)的內(nèi)容,設(shè)置編碼為utf-8,目的就是為了防止亂碼。
訪問(wèn)成功后,來(lái)到了第二個(gè)流程:

2.逐一解析數(shù)據(jù)

解析數(shù)據(jù)這里我們用到了 BeautifulSoup(靚湯) 這個(gè)庫(kù),這個(gè)庫(kù)是幾乎是做爬蟲(chóng)必備的庫(kù),無(wú)論你是什么寫(xiě)法。

下面就開(kāi)始查找符合我們要求的數(shù)據(jù),用BeautifulSoup的方法以及 re 庫(kù)的
正則表達(dá)式去匹配,

findLink = re.compile(r'<a href="(.*?)" rel="external nofollow"  rel="external nofollow" >')  # 創(chuàng)建正則表達(dá)式對(duì)象,標(biāo)售規(guī)則影片詳情鏈接的規(guī)則
findImgSrc = re.compile(r'<img.*src="(.*?)"', re.S)
findTitle = re.compile(r'<span class="title">(.*)</span>')
findRating = re.compile(r'<span class="rating_num" property="v:average">(.*)</span>')
findJudge = re.compile(r'<span>(\d*)人評(píng)價(jià)</span>')
findInq = re.compile(r'<span class="inq">(.*)</span>')
findBd = re.compile(r'<p class="">(.*?)</p>', re.S)

匹配到符合我們要求的數(shù)據(jù),然后存進(jìn) dataList , 所以 dataList 里就存放著我們需要的數(shù)據(jù)了。

最后一個(gè)流程:

3.保存數(shù)據(jù)

 # 3.保存數(shù)據(jù)
 saveData(datalist,savepath)#2種存儲(chǔ)方式可以只選擇一種
 # saveData2DB(datalist,dbpath)

保存數(shù)據(jù)可以選擇保存到 xls 表, 需要(xlwt庫(kù)支持)
也可以選擇保存數(shù)據(jù)到 sqlite數(shù)據(jù)庫(kù), 需要(sqlite3庫(kù)支持)

這里我選擇保存到 xls 表 ,這也是為什么我注釋了一大堆代碼,注釋的部分就是保存到 sqlite 數(shù)據(jù)庫(kù)的代碼,二者選一就行

保存到 xls 的主體方法是 saveData (下面的saveData2DB方法是保存到sqlite數(shù)據(jù)庫(kù)):

def saveData(datalist,savepath):
 print("save.......")
 book = xlwt.Workbook(encoding="utf-8",style_compression=0) #創(chuàng)建workbook對(duì)象
 sheet = book.add_sheet('豆瓣電影Top250', cell_overwrite_ok=True) #創(chuàng)建工作表
 col = ("電影詳情鏈接","圖片鏈接","影片中文名","影片外國(guó)名","評(píng)分","評(píng)價(jià)數(shù)","概況","相關(guān)信息")
 for i in range(0,8):
  sheet.write(0,i,col[i])  #列名
 for i in range(0,250):
  # print("第%d條" %(i+1)) #輸出語(yǔ)句,用來(lái)測(cè)試
  data = datalist[i]
  for j in range(0,8):
sheet.write(i+1,j,data[j])  #數(shù)據(jù)
 book.save(savepath) #保存

創(chuàng)建工作表,創(chuàng)列(會(huì)在當(dāng)前目錄下創(chuàng)建),

sheet = book.add_sheet('豆瓣電影Top250', cell_overwrite_ok=True) #創(chuàng)建工作表
 col = ("電影詳情鏈接","圖片鏈接","影片中文名","影片外國(guó)名","評(píng)分","評(píng)價(jià)數(shù)","概況","相關(guān)信息")

然后把 dataList里的數(shù)據(jù)一條條存進(jìn)去就行。

最后運(yùn)作成功后,會(huì)在左側(cè)生成這么一個(gè)文件

打開(kāi)之后看看是不是我們想要的結(jié)果

成了,成了!

如果我們需要以數(shù)據(jù)庫(kù)方式存儲(chǔ),可以先生成 xls 文件,再把 xls 文件導(dǎo)入數(shù)據(jù)庫(kù)中,就可以啦

以上就是零基礎(chǔ)學(xué)習(xí)Python爬蟲(chóng)的詳細(xì)內(nèi)容,更多關(guān)于Python爬蟲(chóng)的資料請(qǐng)關(guān)注本站其它相關(guān)文章!

美國(guó)服務(wù)器租用

版權(quán)聲明:本站文章來(lái)源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請(qǐng)保持原文完整并注明來(lái)源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非maisonbaluchon.cn所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來(lái)源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來(lái),僅供學(xué)習(xí)參考,不代表本站立場(chǎng),如有內(nèi)容涉嫌侵權(quán),請(qǐng)聯(lián)系alex-e#qq.com處理。

相關(guān)文章

實(shí)時(shí)開(kāi)通

自選配置、實(shí)時(shí)開(kāi)通

免備案

全球線路精選!

全天候客戶服務(wù)

7x24全年不間斷在線

專屬顧問(wèn)服務(wù)

1對(duì)1客戶咨詢顧問(wèn)

在線
客服

在線客服:7*24小時(shí)在線

客服
熱線

400-630-3752
7*24小時(shí)客服服務(wù)熱線

關(guān)注
微信

關(guān)注官方微信
頂部