pyTorch深度學(xué)習(xí)softmax實(shí)現(xiàn)解析
用PyTorch實(shí)現(xiàn)linear模型
模擬數(shù)據(jù)集
num_inputs = 2 #feature number num_examples = 1000 #訓(xùn)練樣本個(gè)數(shù) true_w = torch.tensor([[2],[-3.4]]) #真實(shí)的權(quán)重值 true_b = torch.tensor(4.2) #真實(shí)的bias samples = torch.normal(0,1,(num_examples,num_inputs)) noise = torch.normal(0,0.01,(num_examples,1)) labels = samples.matmul(true_w) + true_b + noise
定義模型
class LinearNet(nn.Module): def __init__(self,in_features): super().__init__() self.fc = nn.Linear(in_features=2,out_features=1) def forward(self,t): t = self.fc(t) return t
加載數(shù)據(jù)集
import torch.utils.data as Data dataset = Data.TensorDataset(samples,labels)#類似于zip,把兩個(gè)張量打包 data_loader = Data.DataLoader(dataset,batch_size=100,shuffle=True)
optimizer
network = LinearNet(2) optimizer = optim.SGD(network.paramters(),lr=0.05)
模型訓(xùn)練
for epoch in range(10): total_loss = 0 for data,label in data_loader: predict = network(data) loss = F.mse_loss(predict,label) total_loss += loss.item() optimizer.zero_grad() loss.backward() optimizer.step() print( 'epoch',epoch, 'loss',total_loss, 'weight',network.weight, 'bias',network.bias )
softmax回歸模型
sotfmax主要用于分類任務(wù)。regression最終得到的是一個(gè)scalar,根據(jù)input中的feature線性相加得到一個(gè)output。分類任務(wù)的結(jié)果是一個(gè)類別,是離散的。
假設(shè)現(xiàn)在有一批圖片是2 * 2大小的灰度圖片,這樣圖片中的每隔二像素用一個(gè)標(biāo)量表示就行了。這批圖片一種是三類小動(dòng)物,第一類是小狗,第二類是小貓,第三類是小兔子。
每張圖片總共4個(gè)像素點(diǎn),我們可以看作是4個(gè)feature,假設(shè)這三類小動(dòng)物的圖片線性可分,每一類對(duì)應(yīng)一組weight和一個(gè)bias。

可以根據(jù)輸出值較大的來(lái)決定哪一類,可這樣有個(gè)問(wèn)題,首先輸出值沒(méi)有明確的意義,且可能是實(shí)數(shù)范圍。其次,不好衡量輸出值與真實(shí)值之間的差距。所以采用softmax操作,將三個(gè)輸出值轉(zhuǎn)化成概率值,這樣輸出結(jié)果滿足概率分布。label采用one-hot編碼,相當(dāng)于對(duì)應(yīng)類別的概率是1,這樣就可以用cross_entropy來(lái)計(jì)算loss。
Fashion-MNIST
本次學(xué)習(xí)softmax模型采用torchvision.datasets中的Fashion-MNIST。
import torchvision import torchvision.transforms as transforms train_set = torchvision.datasets.FashionMNIST( root='./data', train=True, download=True, transform=transforms.ToTensor() )
transforms.ToTensor()將尺寸為(H x W x C)且數(shù)據(jù)位于(0,255)的PIL圖片或者數(shù)據(jù)類型為np.uint8的NumPy數(shù)組轉(zhuǎn)換為尺寸為C x H x W且數(shù)據(jù)類型為torch.float32且位于(0.0,1.0)的Tensor
len(train_set),len(test_set) > (60000,10000)
展示一下數(shù)據(jù)集中的圖片
import matplotlib.pyplot as plt
plt.figure(figsize=(10,10))
for i,(image,lable) in enumerate(train_set,start=1):
plt.subplot(1,10,i)
plt.imshow(image.squeeze())
plt.title(train_set.classes[lable])
plt.axis('off')
if i == 10:
break
plt.show()

train_loader = torch.utils.data.DataLoader(train_set,batch_size=100,shuffle=True,num_workers=4) test_loader = torch.utils.data.DataLoader(test_set,batch_size=100,shuffle=False,num_workers=1)
cross_entropy
def net(samples,w,b): samples = samples.flatten(start_dim=1) #將c,h,w三個(gè)軸展成一個(gè)feature軸,長(zhǎng)度為28 * 28 samples = torch.exp(samples)#全體元素取以e為底的指數(shù) partial_sum = samples.sum(dim=1,keepdim=True) samples = samples / partial_sum #歸一化,得概率,這里還應(yīng)用了廣播機(jī)制 return samples.matmul(w) + b

i表示label對(duì)應(yīng)的種類,pi為真實(shí)種類的預(yù)測(cè)概率,log是以e為底的對(duì)數(shù)
這里gather函數(shù)的作用,就是在predict上取到對(duì)應(yīng)label的概率值,注意負(fù)號(hào)不能丟,pytorch中的cross_entropy對(duì)輸入先進(jìn)行一次softmax操作,以保證輸入都是正的。
模型的實(shí)現(xiàn)
def net(samples,w,b): samples = samples.flatten(start_dim=1) #將c,h,w三個(gè)軸展成一個(gè)feature軸,長(zhǎng)度為28 * 28 samples = torch.exp(samples)#全體元素取以e為底的指數(shù) partial_sum = samples.sum(dim=1,keepdim=True) samples = samples / partial_sum #歸一化,得概率,這里還應(yīng)用了廣播機(jī)制 return samples.matmul(w) + b
利用PyTorch簡(jiǎn)易實(shí)現(xiàn)softmax
import torch import torchvision import torch.nn as nn import torch.nn.functional as F import torch.utils.data as Data import torchvision.transforms as transforms import torch.optim as optim import torch.nn.init as init class SoftmaxNet(nn.Module): def __init__(self,in_features,out_features): super().__init__() self.fc = nn.Linear(in_features=in_features,out_features=out_features) def forward(self,t): t = t.flatten(start_dim=1) t = self.fc(t) return t train_set = torchvision.datasets.FashionMNIST( root='E:\project\python\jupyterbook\data', train=True, download=True, transform=transforms.ToTensor() ) test_set = torchvision.datasets.FashionMNIST( root='E:\project\python\jupyterbook\data', train=False, download=True, transform=transforms.ToTensor() ) train_loader = Data.DataLoader( train_set, batch_size=100, shuffle=True, #num_workers=2 ) test_loader = Data.DataLoader( test_set, batch_size=100, shuffle=False, #num_workers=2 ) @torch.no_grad() def get_correct_nums(predict,labels): return predict.argmax(dim=1).eq(labels).sum().item() @torch.no_grad() def evaluate(test_loader,net,total_num): correct = 0 for image,label in test_loader: predict = net(image) correct += get_correct_nums(predict,label) pass return correct / total_num network = SoftmaxNet() optimizer = optim.SGD(network.parameters(),lr=0.05) for epoch in range(10): total_loss = 0 total_correct = 0 for image,label in train_loader: predict = network(image) loss = F.cross_entropy(predict,label) total_loss += loss.item() total_correct += get_correct_nums(predict,label) optimizer.zero_grad() loss.backward() optimizer.step() pass print( 'epoch',epoch, 'loss',total_loss, 'train_acc',total_correct / len(train_set), 'test_acc',evaluate(test_loader,network,len(test_set)) )
以上就是pytorch深度學(xué)習(xí)softmax實(shí)現(xiàn)解析的詳細(xì)內(nèi)容,更多關(guān)于pytorch深度學(xué)習(xí)的資料請(qǐng)關(guān)注本站其它相關(guān)文章!
版權(quán)聲明:本站文章來(lái)源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請(qǐng)保持原文完整并注明來(lái)源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非maisonbaluchon.cn所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來(lái)源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來(lái),僅供學(xué)習(xí)參考,不代表本站立場(chǎng),如有內(nèi)容涉嫌侵權(quán),請(qǐng)聯(lián)系alex-e#qq.com處理。
關(guān)注官方微信