python編程matplotlib交互繪制Julia集示例解析
所謂Julia集就是類似下面的美妙的圖案

Julia集

特別地,當(dāng) c = z的初始值時(shí),符合收斂條件的 z 的便構(gòu)成大名鼎鼎的Mandelbrot集

在上圖中,顏色表示該點(diǎn)的發(fā)散速度,可以理解為開始發(fā)散時(shí)迭代的次數(shù)。其生成代碼也非常簡單:
#mbrot.py
import numpy as np
import time
import pyplotlib.pyplot as plt
#生成z坐標(biāo),axis為起始位置,nx,ny為x向和y向的格點(diǎn)個(gè)數(shù)
def genZ(axis,nx,ny):
x0,x1,y0,y1 = axis
x = np.linspace(x0,x1,nx)
y = np.linspace(y0,y1,ny)
real, img = np.meshgrid(x,y)
z = real + img*1j
return z
#獲取Julia集,n為迭代次數(shù),m為判定發(fā)散點(diǎn),大于1即可
def getJulia(z,c,n,m=2):
t = time.time()
c = np.zeros_like(z)+c
out = abs(z)
for i in range(n):
absz = abs(z)
z[absz>m]=0 #對開始發(fā)散的點(diǎn)置零
c[absz>m]=0
out[absz>m]=i #記錄發(fā)散點(diǎn)的發(fā)散速度
z = z*z + c
print("time:",time.time()-t)
return out
if __name__ == "__main__":
axis = np.array([-2,1,-1.5,1.5])
z0 = genZ(axis,500,500)
mBrot = getJulia(z0,z0,50)
plt.imshow(mBrot, cmap=cm.jet, extent=axis)
plt.gca().set_axis_off()
plt.show()
matplotlib綁定事件
下面希望實(shí)現(xiàn)點(diǎn)擊Mandelbrot集中的一點(diǎn),生成相應(yīng)的Julia集。
在mpl中,事件綁定函數(shù)mpl_connect被封裝在cavnas類中,調(diào)用格式為
canvas.mpl_connect('str', func)
其中func事件函數(shù),字符串為被傳入事件函數(shù)的事件標(biāo)識,如下所列,望文生義即可
'button_press_event' 'button_release_event' 'draw_event' 'key_press_event' 'key_release_event' 'motion_notify_event' 'pick_event' 'resize_event' 'scroll_event' 'figure_enter_event' 'figure_leave_event' 'axes_enter_event' 'axes_leave_event' 'close_event'
簡單起見,可以先檢測一下鼠標(biāo)點(diǎn)擊事件'button_press_event',對此我們需要定義一個(gè)事件函數(shù),并將上面的入口函數(shù)稍加修改:
def test(evt):
print(evt.xdata) #xdata即x方向的坐標(biāo)
if __name__ == "__main__":
axis = np.array([-2,1,-1.5,1.5])
z0 = genZ(axis,500,500)
mBrot = getJulia(z0,z0,50)
fig, ax = plt.subplots()
fig.canvas.mpl_connect('button_press_event', test)#調(diào)用事件函數(shù)
plt.imshow(mBrot, cmap=cm.jet, extent=axis)
plt.gca().set_axis_off()
plt.show()
于是點(diǎn)擊imshow()出來的圖片,即可返回相應(yīng)的x坐標(biāo)。
python mbrot.py time: 0.47572827339172363 -0.8652597402597402 -0.7840909090909087 -0.18344155844155807 0.23051948051948123 0.8149350649350655
縮放
那么生成Julia集只需要重新調(diào)用一次getJulia這個(gè)函數(shù)即可。
Mandelbrot集的分形特征意味著我們所生成的圖片可以無限放大,但是mpl自帶的放大工具并不會重新生成數(shù)據(jù),所以是虛假的放大。因此需要重新綁定放大操作,其思路是,當(dāng)右鍵點(diǎn)擊(‘button_press_event')時(shí),記錄此時(shí)的坐標(biāo),當(dāng)右鍵釋(‘button_release_event')放時(shí)重新繪制圖片,為了防止與左鍵沖突,所以在點(diǎn)擊所對應(yīng)的事件函數(shù)中加入左右鍵判斷。
其結(jié)果如圖

此外,還可以綁定鼠標(biāo)滾輪,實(shí)現(xiàn)Mandelbrot集在該點(diǎn)的真實(shí)縮放,代碼如下
import matplotlib.pyplot as plt
import numpy as np
from matplotlib import cm
import matplotlib.backend_bases as mbb
import time
class MandelBrot():
def __init__(self,x0,x1,y0,y1,n):
self.oriAxis = np.array([x0,x1,y0,y1]) #初始坐標(biāo)
self.axis = self.oriAxis
self.nx,self.ny,self.nMax = n,n,n#x,y方向的網(wǎng)格劃分個(gè)數(shù)
self.nIter = 100 #迭代次數(shù)
self.n0 = 0#預(yù)迭代次數(shù)
self.z = genZ(self.oriAxis,self.nx,self.ny)
self.DrawMandelbrot()
def DrawMandelbrot(self):
mBrot = getJulia(self.z,self.z,self.nIter)
self.fig, ax = plt.subplots()
plt.imshow(mBrot, cmap=cm.jet, extent=self.axis)
plt.gca().set_axis_off()
self.fig.canvas.mpl_disconnect(self.fig.canvas.manager.key_press_handler_id)
self.fig.canvas.mpl_connect('button_press_event', self.OnMouse)
self.fig.canvas.mpl_connect('button_release_event', self.OnRelease)
self.fig.canvas.mpl_connect('scroll_event', self.OnScroll)
plt.show()
def DrawJulia(self,c0):
z = genZ([-2,2,-2,2],800,800)
julia = getJulia(z,c0,self.nIter)
jFig,jAx = plt.subplots()
plt.cla()
plt.imshow(julia, cmap=cm.jet, extent=self.axis)
plt.gca().set_axis_off()
plt.show()
jFig.canvas.draw_idle()
#滾輪縮放
def OnScroll(self,evt):
x0,y0 = evt.xdata,evt.ydata
if evt.button == "up":
self.axis = (self.axis+[x0,x0,y0,y0])/2
elif evt.button == 'down':
self.axis = 2*self.axis-[x0,x0,y0,y0]
z = genZ(self.axis,self.nx,self.ny)
mBrot = getJulia(z,z,self.nIter)
plt.cla()
plt.imshow(mBrot, cmap=cm.jet, extent=self.axis)
plt.gca().set_axis_off()
mBrot[mBrot<1]==self.n0+self.nIter
self.n0 = int(np.min(mBrot))
self.fig.canvas.draw_idle()
pass
def OnMouse(self, evt):
self.xStart = evt.xdata
self.yStart = evt.ydata
self.fig.canvas.draw_idle()
def OnRelease(self,evt):
x0,y0,x1,y1 = self.xStart,self.yStart,evt.xdata,evt.ydata
if evt.button == mbb.MouseButton.LEFT:
self.DrawJulia(x1+y1*1j) #如果釋放的是左鍵,那么就繪制Julia集并返回
return
#右鍵拖動,可以對Mandelbrot集進(jìn)行真實(shí)的放大
self.axis = np.array([min(x0,x1),max(x0,x1),
min(y0,y1),max(y0,y1)])
nxny = self.axis[[1,3]]-self.axis[[0,2]]
self.nx,self.ny = (nxny/max(nxny)*self.nMax).astype(int)
z = genZ(self.axis,self.nx,self.ny)
n = 100 #n為迭代次數(shù)
mBrot = getJulia(z,z,n)
plt.cla()
plt.imshow(mBrot, cmap=cm.jet, extent=self.axis)
plt.gca().set_axis_off()
mBrot[mBrot<1]==self.n0+n
self.n0 = int(np.min(mBrot))
self.fig.canvas.draw_idle()
def genZ(axis,nx,ny):
x0,x1,y0,y1 = axis
x = np.linspace(x0,x1,nx)
y = np.linspace(y0,y1,ny)
real, img = np.meshgrid(x,y)
z = real + img*1j
return z
def getJulia(z,c,n,n0=0,m=2):
t = time.time()
c = np.zeros_like(z)+c
out = abs(z)
for _ in range(n0):
z = z*z + c
for i in range(n0,n0+n):
absz = abs(z)
z[absz>m]=0
c[absz>m]=0
out[absz>m]=i
z = z*z + c
print("time:",time.time()-t)
return out
if __name__ == "__main__":
x,y = 0,0
brot = MandelBrot(-2,1,-1.5,1.5,1000)
以上就是python編程matplotlib交互繪制Julia集示例解析的詳細(xì)內(nèi)容,更多關(guān)于matplotlib交互繪制Julia集的資料請關(guān)注本站其它相關(guān)文章!
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非maisonbaluchon.cn所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。
關(guān)注官方微信