Matlab實(shí)現(xiàn)圖像邊緣檢測
發(fā)布日期:2021-12-19 09:46 | 文章來源:站長之家
為了在一幅圖像 f 的(x,y)位置尋找邊緣的強(qiáng)度和方向,所選擇的工具就是梯度,梯度使用向量來表示:

該向量指出了圖像 f 在位置(x,y)處的最大變化率的方向,梯度向量的大小表示為:

它是梯度向量方向變化率的值。
梯度向量的方向表示為:

梯度算子
roberts算子:

sobel算子:

prewitt算子:

Matlab實(shí)現(xiàn)
function output = my_edge(input_img,method)
if size(input_img,3)==3
input_img=rgb2gray(input_img);
end
input_img=im2double(input_img);
sobel_x=[-1,-2,-1;0,0,0;1,2,1];
sobel_y=[-1,0,1;-2,0,2;-1,0,1];
prewitt_x=[-1,-1,-1;0,0,0;1,1,1];
prewitt_y=[-1,0,1;-1,0,1;-1,0,1];
psf=fspecial('gaussian',[5,5],1);
input_img=imfilter(input_img,psf);%高斯低通濾波,平滑圖像,但可能會使圖像丟失細(xì)節(jié)
input_img=medfilt2(input_img); %中值濾波消除孤立點(diǎn)
[m,n]=size(input_img);
output=zeros(m,n);
if nargin==2
if strcmp(method,'sobel')
for i=2:m-1
for j=2:n-1
local_img=input_img(i-1:i+1, j-1:j+1);
%近似邊緣檢測,加快速度 %output(i,j)=abs(sum(sum(sobel_x.*local_img)))+abs(sum(sum(sobel_x.*local_img)));
output(i,j)=sqrt(sum(sum(sobel_x.*local_img))^2+sum(sum(sobel_y.*local_img))^2);
end
end
elseif strcmp(method,'prewitt')
for i=2:m-1
for j=2:n-1
local_img=input_img(i-1:i+1, j-1:j+1);
output(i,j)=sqrt(sum(sum(prewitt_x.*local_img))^2+sum(sum(prewitt_y.*local_img))^2);
end
end
else
errordlg('maybe you should input sobel or prewitt');
end
else %如果不輸入算子的名稱,默認(rèn)使用roberts算子進(jìn)行邊緣檢測
for i=1:m-1
for j=1:n-1
output(i,j)=abs(input_img(i,j)-input_img(i+1,j+1))+ ...
abs(input_img(i+1,j)-input_img(i,j+1));
end
end
end
output=imadjust(output);%使邊緣圖像更明顯
thresh=graythresh(output);%確定二值化閾值
output=bwmorph(im2bw(output,thresh),'thin',inf);%強(qiáng)化細(xì)節(jié)
end
代碼效果:

以上就是本文的全部內(nèi)容,希望對大家的學(xué)習(xí)有所幫助,也希望大家多多支持本站。
版權(quán)聲明:本站文章來源標(biāo)注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復(fù)制或仿造本網(wǎng)站,禁止在非maisonbaluchon.cn所屬的服務(wù)器上建立鏡像,否則將依法追究法律責(zé)任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學(xué)習(xí)參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。
相關(guān)文章
關(guān)注官方微信