五月综合激情婷婷六月,日韩欧美国产一区不卡,他扒开我内裤强吻我下面视频 ,无套内射无矿码免费看黄,天天躁,日日躁,狠狠躁

新聞動態(tài)

TensorFlow神經網絡創(chuàng)建多層感知機MNIST數(shù)據(jù)集

發(fā)布日期:2021-12-14 19:02 | 文章來源:CSDN

前面使用TensorFlow實現(xiàn)一個完整的Softmax Regression,并在MNIST數(shù)據(jù)及上取得了約92%的正確率。

前文傳送門: TensorFlow教程Softmax邏輯回歸識別手寫數(shù)字MNIST數(shù)據(jù)集

現(xiàn)在建含一個隱層的神經網絡模型(多層感知機)。

import tensorflow as tf
import numpy as np
import input_data
mnist = input_data.read_data_sets('data/', one_hot=True)
n_hidden_1 = 256
n_input = 784
n_classes  = 10
# INPUTS AND OUTPUTS
x = tf.placeholder(tf.float32, [None, n_input]) # 用placeholder先占地方,樣本個數(shù)不確定為None
y = tf.placeholder(tf.float32, [None, n_classes]) # 用placeholder先占地方,樣本個數(shù)不確定為None
# NETWORK PARAMETERS
weights = {
 'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1], stddev=0.1)),
 'out': tf.Variable(tf.zeros([n_hidden_1, n_classes]))
}
biases = {
 'b1': tf.Variable(tf.zeros([n_hidden_1])),
 'out': tf.Variable(tf.zeros([n_classes]))
}
print("NETWORK READY")
def multilayer_perceptron(_X, _weights, _biases): # 前向傳播,l1、l2每一層后面加relu激活函數(shù)
 layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['w1']), _biases['b1'])) # 隱層
 return (tf.matmul(layer_1, _weights['out']) + _biases['out']) # 返回輸出層的結果,得到十個類別的得分值
pred = multilayer_perceptron(x, weights, biases) # 前向傳播的預測值
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # 交叉熵損失函數(shù),參數(shù)分別為預測值pred和實際label值y,reduce_mean為求平均loss
optm = tf.train.GradientDescentOptimizer(0.01).minimize(cost) # 梯度下降優(yōu)化器
corr = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) # tf.equal()對比預測值的索引和實際label的索引是否一樣,一樣返回True,不一樣返回False
accr = tf.reduce_mean(tf.cast(corr, tf.float32)) # 將pred即True或False轉換為1或0,并對所有的判斷結果求均值
init = tf.global_variables_initializer()
print("FUNCTIONS READY")
# 上面神經網絡結構定義好之后,下面定義一些超參數(shù)
training_epochs = 100 # 所有樣本迭代100次
batch_size = 100 # 每進行一次迭代選擇100個樣本
display_step = 5
# LAUNCH THE GRAPH
sess = tf.Session() # 定義一個Session
sess.run(init) # 在sess里run一下初始化操作
# OPTIMIZE
for epoch in range(training_epochs):
 avg_cost = 0.
 total_batch = int(mnist.train.num_examples/batch_size)
 # Loop over all batches
 for i in range(total_batch):
  batch_xs, batch_ys = mnist.train.next_batch(batch_size) # 逐個batch的去取數(shù)據(jù)
  sess.run(optm, feed_dict={x: batch_xs, y: batch_ys})
  avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch
 # Display logs per epoch step
 if epoch % display_step == 0:
  train_acc = sess.run(accr, feed_dict={x: batch_xs, y: batch_ys})
  test_acc = sess.run(accr, feed_dict={x: mnist.test.images, y: mnist.test.labels})
  print("Epoch: %03d/%03d cost: %.9f TRAIN ACCURACY: %.3f TEST ACCURACY: %.3f"
  % (epoch, training_epochs, avg_cost, train_acc, test_acc))
print("DONE")

迭代100次看下效果,程序運行結果如下:

Epoch: 095/100 cost: 0.076462782 TRAIN ACCURACY: 0.990 TEST ACCURACY: 0.970

最終,在測試集上準確率達到97%,隨著迭代次數(shù)增加,準確率還會上升。相比之前的Softmax,訓練迭代100次我們的誤差率由8%降到了3%,對識別銀行賬單這種精確度要求很高的場景,可以說是飛躍性的提高。而這個提升僅靠增加一個隱層就實現(xiàn)了,可見多層神經網絡的效果有多顯著。

沒有隱含層的Softmax Regression只能直接從圖像的像素點推斷是哪個數(shù)字,而沒有特征抽象的過程。多層神經網絡依靠隱含層,則可以組合出高階特征,比如橫線、豎線、圓圈等,之后可以將這些高階特征或者說組件再組合成數(shù)字,就能實現(xiàn)精準的匹配和分類。

不過,使用全連接神經網絡也是有局限的,即使我們使用很深的網絡,很多的隱藏節(jié)點,很大的迭代次數(shù),也很難在MNIST數(shù)據(jù)集上達到99%以上的準確率。

以上就是TensorFlow神經網絡創(chuàng)建多層感知機MNIST數(shù)據(jù)集的詳細內容,更多關于TensorFlow創(chuàng)建多層感知機MNIST數(shù)據(jù)集的資料請關注本站其它相關文章!

版權聲明:本站文章來源標注為YINGSOO的內容版權均為本站所有,歡迎引用、轉載,請保持原文完整并注明來源及原文鏈接。禁止復制或仿造本網站,禁止在非maisonbaluchon.cn所屬的服務器上建立鏡像,否則將依法追究法律責任。本站部分內容來源于網友推薦、互聯(lián)網收集整理而來,僅供學習參考,不代表本站立場,如有內容涉嫌侵權,請聯(lián)系alex-e#qq.com處理。

相關文章

實時開通

自選配置、實時開通

免備案

全球線路精選!

全天候客戶服務

7x24全年不間斷在線

專屬顧問服務

1對1客戶咨詢顧問

在線
客服

在線客服:7*24小時在線

客服
熱線

400-630-3752
7*24小時客服服務熱線

關注
微信

關注官方微信
頂部