Python Flask搭建yolov3目標檢測系統(tǒng)詳解流程
發(fā)布日期:2021-12-13 18:05 | 文章來源:源碼中國
【人工智能項目】Python Flask搭建yolov3目標檢測系統(tǒng)

后端代碼
from flask import Flask, request, jsonify
from PIL import Image
import numpy as np
import base64
import io
import os
from backend.tf_inference import load_model, inference
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
sess, detection_graph = load_model()
app = Flask(__name__)
@app.route('/api/', methods=["POST"])
def main_interface():
response = request.get_json()
data_str = response['image']
point = data_str.find(',')
base64_str = data_str[point:] # remove unused part like this: "data:image/jpeg;base64,"
image = base64.b64decode(base64_str)
img = Image.open(io.BytesIO(image))
if(img.mode!='RGB'):
img = img.convert("RGB")
# convert to numpy array.
img_arr = np.array(img)
# do object detection in inference function.
results = inference(sess, detection_graph, img_arr, conf_thresh=0.7)
print(results)
return jsonify(results)
@app.after_request
def add_headers(response):
response.headers.add('Access-Control-Allow-Origin', '*')
response.headers.add('Access-Control-Allow-Headers', 'Content-Type,Authorization')
return response
if __name__ == '__main__':
app.run(debug=True, host='0.0.0.0')
展示部分
python -m http.server

python app.py

前端展示部分

到此這篇關(guān)于Python Flask搭建yolov3目標檢測系統(tǒng)詳解流程的文章就介紹到這了,更多相關(guān)Python 目標檢測系統(tǒng)內(nèi)容請搜索本站以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持本站!
版權(quán)聲明:本站文章來源標注為YINGSOO的內(nèi)容版權(quán)均為本站所有,歡迎引用、轉(zhuǎn)載,請保持原文完整并注明來源及原文鏈接。禁止復制或仿造本網(wǎng)站,禁止在非maisonbaluchon.cn所屬的服務器上建立鏡像,否則將依法追究法律責任。本站部分內(nèi)容來源于網(wǎng)友推薦、互聯(lián)網(wǎng)收集整理而來,僅供學習參考,不代表本站立場,如有內(nèi)容涉嫌侵權(quán),請聯(lián)系alex-e#qq.com處理。
相關(guān)文章
關(guān)注官方微信